× Limited Time Offer ! FLAT 20-40% off - Grab Deal Before It’s Gone. Order Now
Connect With Us
Order Now

HVAC System Design Assignment: West Gate Tunnel

Question

Task: I critically analyses the conceptual design phase of a systems engineering project. My project is " heating, ventilation, and air conditioning (HVAC)".

Need To Analyse The Following Phases of The Project:

• Needs definition
• Conceptual system design

To demonstrate your research skills and understanding, your work must draw upon relevant sources like journals, books or reputable trade publications in analysing the engineering assignment project. You must also present the case study in terms of the above two lifecycle phases and evaluate the proposed conceptual design against the identified needs / requirements.

Answer

Introduction

Science and technical advancements have benefited common people in a variety of ways that affect their daily lives. Construction of roads, highways, tunnels, and other infrastructure is one of engineering's most notable advantages. Depending on the requirements, tunnel engineers may now create kilometers-long tunnels thanks to advancements in engineering. However, it has also increased the threat to human life, thus it is necessary to take proper security precautions (Cucchi et al. 2016). The extreme thermal heat and poor air quality inside the tunnels are two primary hazards (Harris et al. 2018). The HVAC system is the most well-known approach that has been designed to lessen the risks. The purpose of the HVAC system design assignment is to discuss the HVAC system's conceptual design for the tunnels. Before summarising the paper and offering relevant recommendations, a system overview, problem and mission definition, physical characteristics, and other critical conversations were conducted.

Overview of HVAC Based Tunnel

Heating, ventilation, and air conditioning, or HVAC, is a technology that aims to provide comfort in both indoor and vehicle environments (Afram and Janabi-Sharifi 2014). The technology under consideration follows the rules of fluid mechanics, heat transmission, and thermodynamics and is based on the mechanical engineering design philosophy. However, civil and construction engineers are responsible for putting the stated system into practise. The described technology is being placed in anything from tiny homes to enormous tunnels in order to improve thermal comfort and air purity. The letter H in the subject's name stands for heating and denotes the subject's ability to control healing. V stands for ventilation, which aims to change and exchange the indoor air to regulate the replenishment of oxygen and the removal of CO2, airborne bacteria, smoke, moisture, and other components linked with the air (Lin et al. 2015). An acceptable temperature and air quality are provided by integrating various equipment and processes. Although it is very helpful in homes, its importance is most noticeable in giant constructions like skyscrapers, deep tunnels, mines, and other massive closed structures. Therefore, it would be fair to say that the system under discussion is capable of providing excellent health safety in locations where it is challenging to reduce the effects of heat and polluting air. As a result, the discussion's goal has been to provide information about the West Gate tunnel's HVAC system.

Needs Identification

Problem Definition: Tunnels are built to reduce distances and to accomplish the mentioned goals, however they are frequently planned to be kilometer-long, which takes a lot of time to travel through. The West Gate Tunnel, which has been regarded as the focus of the HVAC system design assignment, is estimated to be 5 KM long and would require a significant amount of time to traverse (Davis 2018). However, numerous academic studies demonstrate that one is exposed to a variety of hazardous chemicals, including CO2, NO2, CO, NOx, and many more, when in a tunnel (Fang et al. 2016). Additionally, factors like heat, wetness, smoke, and others may be dangerous to onlookers. The difficulties mentioned are further made worse for people who have a history of heart problems (Malecha et al. 2017). Therefore, it becomes extremely important to address the health risks posed while in the tunnel. Therefore, the suggested article is intended to address the technologies that can lessen the threat that tunnels pose and, as a result, makes tunnels appealing.

Mission Definition: The purpose of this document is to lessen the danger that the tunnel presents when it is being used. By balancing the heat inside and maintaining the air quality, the proposed measure might be accomplished. The task under discussion could be accomplished with the aid of technology. HVAC technology, which is made to balance thermal needs and provide high air quality, could help in achieving the specified measure. The purpose of this study is to explore the conceptual design of the HVAC system inside the West Gate Tunnel, which is now under development and could benefit from the services of the technology under discussion. The performance and physical parameters of the system, followed by the utilisation need and environmental element, have been specifically covered in the HVAC system design assignment to achieve the mentioned mission.

Performance and Physical Parameters: Because of the numerous processes involved in achieving its fundamental goal, HVAC systems are capable of using a lot of energy. The system must therefore be made energy-efficient in order to reduce costs, energy use, and emissions. Several strategies might be used to achieve the discussed goal, one of which is to expand your comfort zone because it could result in savings of more than 40%. (Kumar et al. 2016). The strategies that attempt to outfit technology to support the HVAC system are known as the expanded comfort zone. The zone includes concepts like installing heaters, creating dryer air with the help of desiccant dehumidification, and many others as part of its employment. Therefore, it is suggested that the HVAC system be equipped with the previously stated methods and ideas (Sultan et al. 2015). In order to confirm the output's quality, it had also been intended to evaluate the HVAC system's functionality. The test will be evaluated using the COP (Coefficient of Performance) for power efficiency and the PMV (Predicted Mean Vote) to gauge the level of comfort the system provides (Deng et al. 2018). As a result, the system would be chosen once the results of the test were analysed.

Utilization Requirement: The system is designed to provide the comfort of air quality and heat balancing inside the tunnel of the West gate tunnel. Other steps will also be taken to ensure that the system is practical in nature and will be able to achieve the objective presented to it. The implementation of the device under discussion will allow tunnel users to breathe clean air without much of its hazardous effects. Additionally, the fresh air circulation will provide enough oxygen and balance the tunnel's heat flow (Midani, Subagia and Widiantara 2018). The West Gate Tunnel is designed to draw heavy traffic, and occasionally it may become choked with traffic, which would eventually cause the vehicles to stop. In such a dire situation, fresh air would play a significant part in calming the people. Additionally, the system will provide a sense of warmth in the winter seasons, while the fresh air will calm them down in the hot seasons. As a result, the system installation inside the tunnel would be used effectively and provide a highly important and practical environment for the onlookers.

Environmental Factors: The effectiveness and comfort of the suggested system, as stated in the sections above, will be evaluated using COP and PMV. A successful system would therefore provide sustainability and support for the environment (Schuster and Yan 2018). Additionally, it is suggested that the system be supported by an expanded comfort zone, which will provide environmental sustainability thanks to its eco-friendly policies. Wherever it is possible in nature, warmer windows and ventilation will be installed. The system's ultimate goal is to provide a suitable tunnel environment for the PMV to test in. To create a sustainable atmosphere inside the tunnel, the system will expel heat and toxic gases (Wang et al. 2016). Another noteworthy fact is that the West Gate tunnel is still under development, giving the development team the chance to evaluate and test the system's impact and support for the tunnel and determine whether it needs to be further updated to support the environment. The described system is therefore practicable in nature and is capable of accurately sustaining the environment, as stated in the HVAC system design assignment. In addition, the conceptual design of the system and the tunnel provides the option to adjust either the system, the tunnel, or both to support the environmental circumstances.

Conceptual Design

Location of the Tunnel: The West Gate tunnel, which is in the development stage, is one of Australia's and Victoria's most eagerly awaited projects. It will significantly benefit the state's transportation and travel goals. The proposed tunnel aims to provide improvements to the West Gate Freeway's current road network (Smith 2017). The Williamstown Road and the M80 are connected by the motorway. However, the project's greatest notable benefit is its provision of a 3-way highway beneath Yarraville, which also aims to create a longer connection to the CityLink. The connection will be made by tunnels, and as part of the project, a bridge that crosses the Maribyrnong River is also being considered. A fleet of 9300+ trucks will be diverted from the inner-west residential areas by the tunnels currently under construction. It will allow them to impose a 24-hour truck ban in the inner west, and the tunnels will be able to handle all the traffic (Davis 2018). The expected completion date of the project, which has been accelerated from the original deadline of 2023, is 2022 for the toll road (tunnel) that is the subject of the discussion, which will be 5 Km in length and being created at a cost of $5.5 billion (Norman 2018). The decision to choose this project could be explained by the fact that moving a fleet of 9300 trucks there would make the tunnels highly crowded; it is therefore crucial that the truck drivers and other bystanders have a comfortable trip inside the 5KM tunnel.

Modeling of the selected Option

For each of the safety standards and system functionality, a complete set of the transient and 3D simulation is proposed (Satyavada and Baldi 2016). 3D For producing the transient flow fields needed by a finite volume technique, use the Navier Stokes equation. Additionally, a turbulence model equipped for modelling that can support both the tunnel and the ideal natural flow will be used. To be naturally compatible with the system, the tunnels should be built to be radiation-proof. In order to allow for the departure of flammable gases, adequate openings must also be provided. The HVAC system's basic structure and design should also take into account the vibration and noise that would be generated while the tunnel is in use (Villarino, Villarino and Fernandez 2017). The creation of the escape routes so as to provide visibility is another noteworthy quality that the tunnel should have. The suggested precautions could be obtained by computer modelling, thus they ought to be included in the tunnel's HVAC installation procedure. Depending on the requirements of the tunnel, which might be determined after examination of the tunnel in the discussion, additional tools and procedures could potentially be installed during the installation process. The HVAC system and the HVAC system in the tunnel are shown in the pictures below, which were gathered from the internet.
Functional Diagrams

HVAC System Design
(Source: Afram and Janabi-Sharifi 2014)

Conclusion

As a result, the paper under consideration may be summed up by saying that while tunnels are one of the most important demands of roads, they are not immune to difficulties and could provide a serious threat. As a result, the discussion in the HVAC system design assignment has recognised the hazard that tunnels may present and how the HVAC system is able to mitigate the threat. The article has also provided insight into several elements that must be taken into account to enable proper system use in the tunnel to lessen the threat posed by the tunnels. As a result, it is reasonable to deduce from the HVAC system design assignment that tunnels provide a threat that can be reduced with the proper utilisation of the HVAC system.

References

Fill the form to continue reading

Download Samples PDF

Assignment Services